Suppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats

نویسندگان

  • Yi-Qun Liu
  • Zheng Jia
  • Feng Han
  • Takahiro Inakuma
  • Tatsuya Miyashita
  • Kimio Sugiyama
  • Li-Cui Sun
  • Xue-Song Xiang
  • Zhen-Wu Huang
چکیده

Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25 C) was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S) was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperhomocysteinemia induced by guanidinoacetic acid is effectively suppressed by choline and betaine in rats.

Rats were fed 25% casein (25C) diets differing in choline levels (0-0.5%) with and without 0.5% guanidinoacetic acid (GAA) or 0.75% L-methionine for 7 d to determine the effects of dietary choline level on experimental hyperhomocysteinemia. The effects of dietary choline (0.30%) and betaine (0.34%) on GAA- and methionine-induced hyperhomocysteinemia were also compared. Dietary choline suppresse...

متن کامل

Effects of betaine supplementation and choline deficiency on folate deficiency-induced hyperhomocysteinemia in rats.

The effect of betaine status on folate deficiency-induced hyperhomocysteinemia was investigated to determine whether folate deficiency impairs homocysteine removal not only by the methionine synthase (MS) pathway but also by the betaine-homocysteine S-methyltransferase (BHMT) pathway. For this purpose, we investigated the effect of dietary supplementation with betaine at a high level (1%) in ra...

متن کامل

Choline deprivation induces hyperhomocysteinemia in rats fed low methionine diets.

To clarify the relationship between dietary choline level and plasma homocysteine concentration, the effects of choline deprivation on plasma homocysteine concentration and related variables were investigated in rats fed a standard (25%) casein (25C) diet or standard soybean protein (25S) diet. Using the 25S diet, the time-dependent effect of choline deprivation and the comparative effects of t...

متن کامل

Hypohomocysteinemic effect of cysteine is associated with increased plasma cysteine concentration in rats fed diets low in protein and methionine levels.

Rats were fed diets with and without 0.5% L-cysteine supplement for 14 d or shorter periods to clarify the mechanism by which dietary cysteine elicits its hypohomocysteinemic effect. Cysteine supplementation significantly decreased plasma homocysteine concentration with an increase in plasma cysteine concentration in rats fed 10% casein diet (10C) or 15% soybean protein diet (15S) but not in ra...

متن کامل

Betaine as a methyl donor and an antioxidant agent in levodopa-induced hyperhomocysteinemia and oxidative stress in rat's kidney

BACKGROUND: Betaine has been shown to be antioxidantand methyl donor effects in our recent studies. OBJECTIVES: Inthe present study, the antioxidant and methyl donor properties ofbetaine in levodopa/benserazide-mediated hyperhomocysteinemiaand levodopa-induced oxidative stress in rat's kidney wereexamined. METHODS: Sprague-Dawley male rats were dividedinto levodopa (LD), Betaine (Bet.), levodop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014